目的 基于喹唑啉为母核设计发现新型抗肿瘤活性化合物。方法 以邻氨基苯甲酰胺和三氟乙酸酐为起始原料采用缩合、环化、氯代和偶联反应等合成了一系列4-氨基-2-三氟甲基喹唑啉衍生物(5a~5u)。采用四甲基偶氮唑盐(MTT)法评价所得目标化合物对人肺癌细胞A549、人宫颈癌细胞Hela、人白血病细胞K562、人前列腺癌细胞PC-3、人前列腺癌细胞LNCaP这5种肿瘤细胞的体外增殖抑制活性。结果 化合物5c在5 μmol·L-1时对PC-3肿瘤细胞的抑制率为49.3%,化合物6a对LNCaP和K562、以及6b对PC-3的抑制率超过了50.0%。结论 本实验设计合成的4-氨基-2-三氟甲基喹唑啉类化合物多数具有一定的抗肿瘤活性,特别是4-氨基的N-甲基化产物6a、6b的体外抗肿瘤活性较原型化合物(5n与5u)显著增强,为该类化合物的进一步研究提供参考。
Abstract
OBJECTIVE To search for and synthesize series of novel anti-tumor quinazoline derivatives.METHODS A series of 4-amino-2-trifluoromethyl quinazoline derivatives were synthesized by condensation, cyclization, chlorination and coupling reaction starting from 2-aminobenzamide.Their anti-proliferative activity against A549, Hela, K562, PC-3 and LNCaPcell lines were evaluated by MTT assay.RESULTS Compound 5c exhibited certain inhibitory activity against PC-3 cell line with inhibitory values of 49.3% at 5 μmol·L-1. The inhibition rate of 6a against LNCaP and K562 was higher than 50.0%as well as compound 6b against PC-3.CONCLUSION Some of the target compounds show certain inhibitory activities against LNCaP, PC-3 and Hela tumor cell lines. In particular, the anti-tumor activities of N-methylated products 6a and 6b are significantly higher than those of the prototype compounds(5n and 5u), which provides a basis for the further study of these compounds.
关键词
喹唑啉 /
三氟甲基 /
化学合成 /
抗增殖活性 /
四甲基偶氮唑盐法
{{custom_keyword}} /
Key words
quinazoline /
trifluoromethyl /
chemical synthesis /
antiproliferative activity /
MTT assay
{{custom_keyword}} /
中图分类号:
R914
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249.
[2] WEI Q H, LIU X Y,WANG P, et al. Research progress in classification and pharmacodynamics of anti-tumor drugs [J]. Med Recapit(医学综述), 2020, 26(18): 3701-3716.
[3] SHANG X F, NATSCHKE S M, LEE K H, et al. Biologically active quinoline and quinazoline Alkaloids part I [J]. Med Res Rev,2018, 38(3): 775-828.
[4] LONG S, RESENDE D, SOUSA E, et al. Antitumor activity of quinazolinone alkaloids inspired by marine natural products[J]. Mar Drugs, 2018,16(1):261, doi:10.3390/md16080261
[5] HANG X F, NATSCHKE S M, LEE K H, et al. Biologically active quinoline and quinazoline Alkaloids part II[J]. Med Res Rev, 2018, 38(5): 1614-1660.
[6] LI P C,LIU G,CAO K, et al. Research progress in quinazoline derivatives with anticancer activity[J]. Chin Pharm J(中国药学杂志),2016,51(11): 867-874.
[7] HAMEED A, RASHIDA M, KHAN K M, et al. Quinazoline and quinazolinone as important medicinal scaffoldes: a comparative patent review(2011-2016)[J]. Expert Opin Ther Pat, 2018, 28(4): 281-297.
[8] MAEMONDO M, INOUE A, KOBAYASHI K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR[J]. N Engl J Med, 2010, 362(25), 2380-2388.
[9] KANNAN S, TAN D S, VERMA C S.Effects of single nucleotide polymorphisms on the binding of afatinib to EGFR: apotential patient stratification factor revealed by modeling studies[J]. J Chem Inf Model, 2019, 59(1):309-315.
[10] CHEN L F, FU W T, LIANG G. Recent progress of small-molecule epidermal growth factor receptor(EGFR) inhibitors against C797S resistance in non-small-cell lung cancer[J]. J Med Chem,2018, 61(10): 4290-4300.
[11] MAHESWARAN S, SEQUIST L V, HABER D A, et al. Detection of mutations in EGFR in circulating lung-lancer cells[J]. N Engl J Med, 2008, 359(7): 366-377.
[12] LIM S M, SYN N L, SOO R A, et al. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: mechanisms and therapeutic strategies[J]. Cancer Treat Rev,2018,65(4):1-10.
[13] ZHOU W J, ERCAN D, JANNE P A. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M[J]. Nature, 2009, 462(4): 1070-1074.
[14] THRESS K, PAWELEZ C, FELIP E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M[J]. Nat Med, 2015, 21(6): 560-562.
[15] MEANWELL N A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design[J]. J Med Chem, 2018, 61(14): 5822-5880.
[16] DOLSAK A, SVAJGER U, SOVA M, et al. Selective toll-like receptor 7 agonists with novel chromeno[3,4-d]imidazol-4(1H)-oneand 2-(trifluoromethyl)quinoline/quinazoline-4-amine scaffolds[J]. Eur J Med Chem, 2019, 179:109-122,doi:org/10.1016/j.ejmech.2019.06.030.
[17] HEALEY B,ZHAO Z, SCHWARZ M, et al. Antiproliferative pyrimidylfused pyrimidyl and pyrimidyl hydrazones:USA,US20120238575[P]. 2012-09-20.
[18] ANDERSON M B,WILLARDEN A, WEINER W S,et al. Compounds and therapeutical uses thereof:USA,US20130029942[P]. 2013-01-31.
[19] MANEVSKI N, KING L, PITT W R,et al. Metabolism by aldehyde oxidase: drug design and complementary approaches to challenges in drug discovery[J]. J Med Chem, 2019, 62(24): 10955-10994.
[20] JIA J J, GUO Z Y, LIANG Y H, et al.Synthesis and anti-tumor activities of quercetin and its derivates[J]. Chin Pharm J(中国药学杂志),2016,51(23):2013-2017.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
贵州省高层次创新型人才培养计划课题资助(黔科合平台人才[2016]5678);贵州省自然科学基金项目资助(黔科合基础-ZK[2021]一般070)
{{custom_fund}}